Constr. Approx. (1986) 2: 369-376

CONSTRUCTIVE
APPROXIMATION

© 1986 Springer-Verlag New York Inc.

Uniform Asymptotic Expansion for a Class of
Polynomials Biorthogonal on the Unit Circle

N. M. Temme

Abstract. An asymptotic expansion including error bounds is given for poly-
nomials {P,, Q,} that are biorthogonal on the unit circle with respect to the
weight function (1-¢)*™#(1-¢™*)*"#. The asymptotic parameter is n; the
expansion is uniform with respect to z in compact subsets of C\{0}. The point
z=1 is an interesting point, where the asymptotic behavior of the polynomials
strongly changes. The approximants in the expansions are confluent hyper-
geometric functions. The polynomials are special cases of the Gauss hyper-
geometric functions. In fact, with the results of the paper it follows how (in a
uniform way) the confluent hypergeometric function is obtained as the limit of
the hypergeometric function ,F,(a, b; ¢; z/b), as b+, z5# b, with z=0 as
‘““transition” point in the uniform expansion.

1. Introduction

The polynomials considered are
P.(z;a,B)=,F(-na+B+1;2a+1;1-2)
_(a-p),
Qa+1),
Q.(z; a, B) = Py(z; o, =B).

The biorthogonality means that there is a weight function

(1.1) JFi(—n,a+B+1;B+1-n—-qa;z),

(1.2) a(8)=(1-e®)*"P(1-e7)*7# = (2-2cos 6)*(—e")’,

such that

(13) -2—17; _r Pn(e®; o, B)Qu(e™; o, B)a(6) dd=0, m#n,
I'a+1) n! en

TTa+B+1)(a-B+1) (2a+1),
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A proof of this can be found in [2]. In the same paper the polynomials are
considered for large values of n, especially for values of z near unity. It is stated
that

(1.4) lim P,(e"’"; o, B) = Fi(a+B+1;2a+1; if),

which is analogous to a well-known asymptotic result for Jacobi polynomials in
terms of Bessel functions. Askey raised the question of how to obtain more terms
in the asymptotic result (1.4) and of how to give bounds on the error in the
expansion.

In this paper we give the full asymptotic expansion which gives (1.4) as a
special case, and we give the error bounds. The result is valid for z ranging in
compact subsets of C\{0}. So, our expansion especially holds in a neighborhood
of z=1.

The point z =1 is interesting, since « (@) vanishes there (that is, (8) vanishes
at 8 =0, and we write z=¢" for z on the unit circle). As Askey remarked, we
want to understand the effect of zeros of the weight function on the asymptotic
behavior of orthogonal or biorthogonal polynomials. It is also interesting to
obtain information on the location of the zeros of P, and Q,. A special case
gives direct information. Let « = —8 =3, then we have

1oy L 1=z""
Pn(Z,Z, 2)"n+1 1—2z s

Qnlz;3, —3) =2"
In this simple case the zeros of P, are uniformly distributed over the unit circle,
but those of Q, are all concentrated at z=0.

In the theory of special functions, the confluent hypergeometric functions are
usually introduced as the limit of the Gauss function:

(1.6) lim ,Fi(a, b; c; z/b),
b—>oo

(1.5)

with a, ¢, and z fixed. In some way, this is stated in (1.4). In the definition of
the polynomials P,, Q,, the parameter n in (1.1) should be entire and nonnegative.
However, our asymptotic methods accept real positive values of the large
parameter n. Since

2Fi(a, b; c; z) =(1_Z)c—a—b2F1(C—a, c—b;c; z),

the sign of the large parameter is not relevant.
.Consequently, our results can be extended to the more general problem of
giving the uniform expansion of

2Fi(a, b; c;1-2), a-> 0,

b, ¢ fixed and z in compacta of C\{0}, and probably for complex values of a.
This generalization will not be considered here.

_We conclude this section with some historical documentation about the
biorthogonal system (1.1) (communicated by Tom H. Koornwinder).
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The biorthogonality (1.3) was first stated in [1], while in [4, (1.15)] a proof of
(1.3) (different from Askey’s proof) was given. It was pointed out there that these
polynomials can be expressed in terms of Heisenberg polynomials, which live on
the Heisenberg group and were first introduced in [5], while the notation
C§&P)(e™*) introduced in [3] is now standard for these Heisenberg polynomials.
Yet another interpretation and proof of the biorthogonality was given in [6, see
(a) after Remark 3.4]. The present paper uses the notation of [2]. The connection
with the Heisenberg polynomials reads

Pn(eiﬂ; @, ﬁ) = * ein@/zc("a—-ﬂ,a+3+1)(ei9/2).

2. The Asymptotic Expansion

The standard integral for , F,-functions gives
I'a+1)

(2.1) P,(z; a,B)=m s
where

R S R =1—
(2.2) I, F(a—ﬁ)Lt (1-1) (1—=1&)" dr, (=1-2z

For convergence of the integral we have the conditions a+8>-1, a —~8>0.
However, the reciprocal gamma funétion before the integral removes the singular-
ity due to @ = B. So we assume that

(2.3) a+pB>-1.
When complex values of @, 8 are used, the condition is Re(a+ ) > ~1. Put
1—t§=lu = eulnz’

with In z the principal branch of the logarithm, which is real when z> 0. Then

we have
f a—p—1| Inz 2e
I,,=Z Jn’
z—1
1 1
J,,:—————J‘ F)uB(1—u)* P! e du,
(2.4) 3 F'(a—B) Jo

l_zu a+B l_zu—l a-B-1
f<">=[-u1nz] [m—} :

L wo=(n+1)Inz

The function f is holomorphic in a neighborhood of [0, 1]; singularities occur at

2kari o = 1+2mvzrz’ K, me Z\{0}.

(2.5) U = s
Inz
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So when z ranges through compact subsets of C\{0}, the singularities of f are
bounded away from [0, 1].

Before constructing the uniform asymptotic expansion we first remark that
simpler, i.e., nonuniform expansions can be obtained for two separate cases:

(i) Re w=(n+1)In|z| <0, z fixed.
The dominant point in the integral J, is u =0, and the asymptotic expansion
follows by expanding the function f(u) at u =0. The result is

rRa+1)
I'(a-B)

(26)  Pu(z;0,B)~ [(n+1)(1-2)]"*""7",  as n-oco

(ii) Re >0, z fixed.
Now the dominant point is u =1 and an expansion of f(u) at u =1 has to be
used. In this case

ra+1)

——_— Nz n+a—pB _ B—a + B—a 0.
F(a+B+l)z (z=1)F*(n+1)"7°, as n-

(27) Pulz;¢,B8)

In the uniform expansion, contributions from both ¥ =0 and u=1 will be

taken into account. In this way we can allow Re o to be negative as well as
positive; even o =0 is accepted.

Observe that Re w >0, Re w <0 is equivalent to |z| > 1, |z| < 1, respectively, so
that in fact all points on the unit circle in the z-plane are “‘transition” points;
i.e., points for which the asymptotic behavior of the polynomials P,, Q, will
change drastically. For polynomials this is not surprising, of course. However,
in (2.2), (2.6), (2.7) and in the following analysis n need not be an integer.

A uniform expansion for J, of (2.4) is obtained as follows. We write
(2.8) Sf(u)=apg+ Bou+u(l—u)go(u)
with a4 = f(0), Bo=f(1) —f(0). Then J, of (2.4) equals
Jn = aogpot Bopy + H,

with
TN(a+B+
¢0=—{_‘%;§;-1—)1—)1F,(a+ﬁ+1;2a+1;w),
(2.9)
FNa+B+2) d
=" Fa+B+2;2a+2; w) =— ¢q.
¢ r(2a+2) 1 l(a B 2,2a 2’ w) da) ®o

Integration by parts gives for H,, when w #0,

1

1
H=———
" wF(a-B) L

go(u)ua+ﬁ+l(l _ u)a—B de“*

l ! a+ a—-B—-1 wu
=;F—(C!_—[3)Joﬂ(u)u B(1—u)* P 'e“ du,
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with
(2.10) filw)=[Qa+1)u—a-B-1]1go(u)—u(l—-u)go(u).

This new f; has the same domain of regularity as g, and f. By repeating the above
procedure, we obtain the formal expansion

g am g m
(2.11) Jo~ @0 L =T E?

m=0 W m=0
with

Cyy =fm(0)a Bm =fm(1)_fm(0)’ f;)=f;
(212) S fu(u)=[Qa+1Nu—a=B~11gn-1(u)—u(l-u)gn(u) (m=1)
=+ Buutu(l—u)g,.(u) (m=0)

and where w =(n+1)Inz
The restrictions on «, B8 are as in (2.3). For « we temporarily suppose w # 0.

In the following section we prove that

Xy Bm

B, = )
In™z In"z

(2.13) A, =

m=0,1,...,

are regular functions of z in C\{0}. So, the complete expansion for P, is

IF'Ra+1) a_ﬁ_l[ In 2]2"
~—T —

I(a+B+1) z—1

S __Am S B,

x |:(P0 ,,.Z-_:o (Yl + l)m * @ méo (n+ l)m]’
as n - o0; the expansion holds uniformly with respect to z in compact subsets of
C\{0}. The same holds for Q,(z; a, B) with B replaced by —B (also in (2.3)). So
we have for both P, and Q, an expansion as in (2.14) when —a —-1<B<a+1,
when « and B are complex, the real parts of «, B8 should satisfy these inequalities.

The expansion (2.14) contains (1.4) as a special case, since for z=1 we have
Xg = 1, ﬁo = 0.

An error bound for the expansion in (2.14) follows easily from the integration
by parts procedure. Writing for J, of (2.4)

k-1 k-1 B

2.1 J, = — —=—+ Ry, k=0,1,...,
(2.15) "’°,nz=o(n+1)"' "°‘,.,§O(n+1)'" k

(2.14) P.(z; a, B)

we have for R, the representation

(2.16) Rk:mjo Sfeu* P (1—u)* P e du.

Again, f;.(u)/In* z is regular (see the next section) and we define positive numbers
M, not depending on u such that

(217)  |fi(u)| =|In* z| M, uelo,1], z in a compact subset of C\{0}.
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Then we obtain

lel Mk[@O[,

S ———

(n+1)k
where @, is ¢, of (2.9) with w replaced by Re w. This gives an error bound for
the asymptotic expansion and it shows the asymptotic nature of (2.14).

3. On the Regularity of 4,,, B, at z=1

In this section we show that the coefficients of (2.14) defined in (2.13) are regular
functions of z, especially when A :=In z=0. We also show that |f;(u)| can be
bounded as in (2.17), again when A =0. We suppose in this section that |A| is
small, say |A|= Ao, where A, is a fixed small positive number.

Before proving the regularity of A, and B,, we remark that f(u) of (2.4)
depends in a crucial way on the uniformity parameter In z. The result (2.14) is
certainly not true for more general functions, say functions just regular on a set
in the complex u-plane containing [0, 1] in its interior.

Inspection of f of (2.4) shows that it can be written as

(3.1) f) = Qg (u-1)), Ar=lnz
where
x _ a+pB x _ a—B-—1
(32) o(x) = (e 1) L w0 = (e 1) .
X X

The fact that in both ¢(x) and ¢(x) the same function of x appears is not so
important. However, it is crucial that the parameter A appears in both ¢ and ¢
in (3.1). We expand f(u) in powers of A. That is, we write

[Sel

(33) f)= T poA™u" T quA"(u=1)"= 3 ra(u",

m=0

where

rm(u) = kgopkqm—kuk(u—l)m—k'

Observe that r, is a polynomial in u of degree m. Since |A| is small, the
manipulations of the series in (3.3) holds for u-values in a set U in the u-plane
that contains [0, 1] in its interior; the r,-series in (3.3) converges uniformly with
respect to ue U.

By using (3.3) and (2.8) we infer that g, can be written in the form

D8

34) go(u) = Sm(U)A™, with so=s5,=0,

m=0

where s, is a polynomial in u of degree m—2 (m=2).
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The proof of this is easily established by using a Cauchy integral representation
for go. From (2.8) it follows that

1 f(v)
3.5 u)=—— —_——d
(3.5) go(u) 27-riJ-C v(l—v)(v—u) ©
where C is a contour in the above-mentioned domain U; C encloses the interval
[0, 1]. This representation follows by writing f(u), f(1), f(0) as similar contour
integrals. Substituting the r,,-series of (3.3) we obtain for s,, in (3.4)

sm<u)=ij W)

2mi Jev(1—=0v)(v—u)

Since r,,(v) is a polynomial of degree m, s,= s, =0, which establishes (3.4); it is
also clear that s,,(u) is a polynomial of degree m—2 for m=2.
We next consider f; of (2.10). Writing

A= T rPwAm
m=0

we obtain

rP>u)=[QRa+1)u—a—B—1]s.(u) —u(1—u)s,(u)].

So, '}’ is a polynomial of degree m —1, ri"’ = r{"’ =0. This shows that f;(u)/\ is

regular for all ue U and |A|<Aq; so A,, B, are regular for |A] <A,. The same
procedure can be used for the higher coefficients A,, B, in (2.14) and to establish
the meaning of (2.17) for z->1 or A >0, for all k=0.

As remarked earlier, the special form of ¢ and ¢ in (3.1) is not important. In
fact, the method applies to more general functions f, or ¢ and ¢, as long as the
representation (3.1) remains and ¢ and ¢ are regular in some neighborhood of
[0,1]. Use of analytic functions and of Cauchy integrals is not needed. The
verification of the regularity of fi(u)/In*z as z—1 can be proved without using
(3.5), but the present proof is rather elegant and short.

4. Concluding Remarks

(i) Although the coefficients a,,, B, in (2.11) are defined in terms of a recursion
relation (2.12), the evaluation of these coefficients, and hence of A,,, B, in (2.12),
is a tedious process. Especially, the evaluation of A,,, B,, for z at or near unity
is difficult. A completely different approach to obtain (2.14) can be based on the
differential equation of the Gauss functions. By substituting (2.14) into a trans-
formed version of this equation a recursive system is obtained for A,,, B, and
their derivatives. Taylor expansions of A,,, B,, around z = 1 can then be substituted
to compute coefficients of these expansions. In Olver [7] asymptotic methods for
special functions are usually based on differential equations.

(ii) In the discussion of (2.6), (2.7) we observed that the role of the critical
points u=0, u=1 of J, in (2.4) is interchanged when log |z| changes sign. The
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confluent hypergeometric functions ¢,, ¢; of (2.9) are exponentially large when
Re w > +00. When Re w - —c0 they are of algebraic growth in w, and not exponen-
tially small. These asymptotic features and the use of confluent hypergeometric
functions as approximants in such problems have not been discussed in the earlier
asymptotic literature, as far as I know.

(iii) The special case 2(a +B+1)=2a+1 (or B = —}) makes a Bessel function
of ¢, in (2.9). It also gives the integrand of J, in (2.4) some symmetry. In this
form the asymptotic problem resembles that of certain Legendre functions, as
considered in Ursell [10]. The simple case a =3, B =3 yields for ¢, the spherical
Bessel function of order zero (see (1.5)). Furthermore, in the case 8 =—3 not
only the confluent hypergeometric function becomes a Bessel function, but also

n!
2a+1),
Thus the familiar asymptotics of Gegenbauer polynomials in terms of Bessel

functions must in fact be a special case of the results in this paper.
(iv) A similar asymptotic has been considered in the literature for

RGN +a+B8+1),3(—ih+a+B+1); a+1; —sinh®(t/A))
as A tends to oo, cf. [8] and [9].

P.(e" a, -1 = e™2Cs*?(cos30),  a Gegenbauer polynomial.
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